207. Asymmetric Induction at $C(\beta)$ **and** $C(\alpha)$ **of N-Enoylsultams by Organomagnesium 1,4-Addition/Enolate Trapping**

by **Wolfgang Oppolzer*, Giovanni Poli, Arend J. Kingma, Christian Starkemann,** and **Gerald Bernardinelli**

Département de Chimie Organique, Université de Genève, CH-1211 Genève 4

 $(8.X.87)$

The 1.4-addition of alkylmagnesium chlorides to conjugated M-enoylsultams and subsequent 'enolate trapping' with aq. NH₄Cl or MeI/hexamethylphosphoric triamide generated centers of asymmetry at $C(\beta)$ and/or at $C(\alpha)$ with good to excellent π -face differentiation as demonstrated by the conversions $1\rightarrow 2$, $1\rightarrow 4$, and $8\rightarrow 9$. This holds also for the regioselective 1,4-addition of EtMgCl to a dienoylsultam $(15\rightarrow 16)$. Reactive conformations 1^* , **8#, 13,** and **14** are postulated in agreement with X-ray evidence which also served for the structure determination of the product **9j.**

Introduction. - Stereoface-selective 1,4-additions of organometallic nucleophiles to conjugated carbonyl derivatives which carry a chiral auxiliary are among the most reliable approaches to enantiomerically pure $C(\beta)$ -substituted carbonyl compounds¹). As part of extensive work on asymmetric β -additions of organocopper reagents to enoates [3] [4], we showed that the same ester auxiliary may also induce chirality at $C(\alpha)$ in a subsequent deprotonation/electrophilic substitution step [4] *[5].* However, a related 'onepot' formation of two centers of asymmetry (at $C(\beta)$ and $C(\alpha)$) in an open chain²) *via*

^{&#}x27;) Review, see [1]; further references, see [2] [3].

 $2₁$ For previously recorded cases of $C(\beta)$, $C(\alpha)$ inductions in cyclic systems, see [2].

electrophilic trapping of the enolate intermediate is even more attractive. Recently, this goal has been achieved by alkyllithium addition/alkylation of α , β -unsaturated iron-acyl complexes [6]. Another example is the tandem hydride addition/ $C(\alpha)$ -protonation or methylation $III \rightarrow IV$ $(R^{2(-)} = H^-, E^{(+)} = H^+$ or Me⁺; *Scheme 1*) [7].

We continued to explore the bis-functionalization $III \rightarrow IV$ by employing C-nucleophiles $\mathbb{R}^{2(-)3}$). As a complement to preliminary reports [4] [9], we describe here in detail convenient alkylmagnesium-chloride β - addition/enolate-trapping processes $III \rightarrow IV$. As usual [4] [lo], enoylsultams **111** were readily obtained by acylation of sultam **I** with NaH/acyl chlorides **II** $(Y = Cl)$ or with Me₃Al/esters **II** $(Y = OMe)$ and purified by crystallization.

Conjugate Addition of *Grignard* Reagents to β -Substituted (E) -Enoylsultams and **Subsequent 'Enolate' Protonation.** – We first addressed the issue of induction at $C(\beta)$ *(Scheme 2, Table 1).* Simple alkylmagnesium chlorides added smoothly in a 1,4-fashion to β -substituted (E)-enoylsultams 1 to give, on subsequent treatment with aq. NH₄Cl, imides *213* in good yields. No 1,2-additions were observed, except with methyl *Grignard*

Table 1. Conjugate Additions of R^2MgCl to β -Substituted (E)-Enoylsultams and Subsequent 'Enolate' Protonation; $1 \rightarrow 2 + 3$

For a related organocopper addition/transmctallation/*Mannich* reaction sequence, see [8].

reagents, The extent of diastereoface differentiation was determined by capillary-GC analyses of the crude reaction mixtures. Comparisons (GC, 'H-NMR) with authentic samples of **2** [1 **1],3a,** and **3b** [7] served to assign the absolute configurations of **2a-f.** Imide **2g** was shown to possess the (3R)-configuration by mild saponification (LiOH, aq. THF) to $(3R)$ -3-ethylheptanoic acid, the optical rotation of which was compared with a previously reported value [12). In all cases listed in *Table I,* product **2** dominated significantly over its epimer **3.** Addition of the sterically more demanding i-PrMgCl to **1** ($R^1 = Me$) resulted in a comparatively low diastereoisomeric excess (d.e.) of **2c** (72.4 %).

Conjugate Addition of *Grignard* Reagents to β -Substituted (E) -Enoylsultams and **Subsequent 'Enolate' Methylation.** – We then explored the possibility of generating, starting from 1, a second chiral center at $C(\alpha)$ (Scheme 2, Table 2). Treatment of 1 $(R¹ = Me)$ with BuMgCl and methylation of the resulting magnesium 'enolate' by addition of MeI/hexamethylphosphoric triamide **(HMPA)** afforded a 86.7: 4.7: 8.6 mixture **4a/6a/7a** in 80% yield. Not even a trace of the (2S,3S)-isomer **5a** could be detected by

Table 2. Conjugate Additions of $BuMgCl$ to β -Substituted (E)-Enoylsultams and Subsequent 'Enolate' Methylation: $1 - 4 + 6 + 7$										
	R^1	Yield $[\%]$ $4+5+6+7$	Ratio 4/5/6/7	4 (crystallized)						
				Yield [%]	Purity $\lceil \sqrt{6} \rceil$	Configu- ration	$H\text{-}NMR$ (δ [ppm])			
							CH ₃ (8')	$CH_2-C(2)$		
а	Мe	80	86.7:0:4.7:8.6	48	97.5	2R.3R	1.19(s)	1.22(d)		
ь	Et	58	88.2.0:3.3:8.5	36	98.3	2R.3R	1.12(s)	1.13(d)		

 $1 \rightarrow 4 + 6 + 7$

GC. The major product 4a was isolated in 48% yield and 95% d.e. by crystallization and assigned the $(2R,3R)$ -configuration based on the following evidence: sultam **I** was reacted with a mixture of the minor $(2RS,3SR)$ - and the major $(2RS,3RS)$ -2,3-dimethylheptanoyl chloride [13]; GC analysis of the resulting mixture showed 4 peaks (retention times: 17.73, 17.91, 18.02, 18.28) in a 1:1:1.2:1.2 ratio; accordingly, the last 2 peaks correspond to the (ZRS,3RS)-isomers (see *Exper. Part).* Furthermore, taking into account the preferred formation of the $(3R)$ -center in the 1,4-addition step *(Table 1, 2d)*, it follows that the major **1,4-addition/methylation** product (last GC peak by coinjection) has the $(2R,3R)$ -topicity as represented by structure **4a**. Further support for the $(2R)$ assignment of **4a** was provided by the general observation that the 'H-NMR spectra of (2R)-2-methyl-substituted acylsultams, derived from (+)-camphor, display the *d* of $CH₃-C(2)$ at lower field relative to the s of $CH₃(8')$ of the bornane moiety⁴). Starting from the homologue 1 with $R¹ = Et$, the identical 1,4-addition/methylation conditions furnished a 88.2: 3.3: 8.5 mixture of 3 isomeric products. The major product **4b,** obtained in *ca.* 100% d.e. by crystallization, shows 'H-NMR data in agreement with the assigned $(2R)$ -configuration⁴).

⁴) This trend seems to be independent of the substitution and configuration at $C(\beta)$. Corresponding ¹H-NMR data for (2S)-2-methylacylsultams were observed for $3a(1.18(s), 1.16(d)[7])$, $3b(1.18(s), 1.16(d)[7])$, and $6a$ (1.08 **(s).** 0.99 *(d)* 1141).

Conjugate Addition of *Cvignavd* **Reagents to N-Methacryloylsultam and Subsequent 'Enolate' Protonation.** $-$ As an alternative method to create a chiral center at $C(\alpha)$ of a carbonyl compound, we then subjected α -substituted enoylsultams **8** to the alkylmagnesium-chloride addition/protonation sequence. The alkylmagnesium chloride (1-2 **M** solution in Et₂O) was added at -80° to a solution of N-methacryloylsultam **8** ($R¹ = H$) in toluene; warming up to room temperature within 15 min, quenching of the *in situ-*prepared Mg enolate at -95° with an emulsion of sat. aq. NH₄Cl solution in THF afforded C- methyl-substituted N-acylsultams **9** $(R^1 = H)$ with high diastereofacial differentiation *(Scheme 3, Table 3)⁵).*

Even MeMgCl gave conjugate adducts **9a/10a** (9: 1) although in only 45 % yield due to concurrent 1,2-addition. Higher alkyl *Grignard* reagents furnished products **9** $(R^{\dagger} = H)$ / **10** $(R^1 = H)$ in ratios ranging from 91.5: 8.5 up to 97:3 (80-93% yield) from which the major epimer **9** (\mathbb{R}^1 = H) was routinely isolated in virtually pure form and in good yield by flash chromatography and/or crystallization (see $9b-e$). The $(2R)$ -configurations of 9

Table **3.** *C'onjugute Additiorrs of R'MgCI 10 N-Merharryloylsultum and Subsequent 'Enolale' Protonation:* $8(R^1 = H) \rightarrow 9(R^1 = H) + 10(R^1 = H)$

	R^2	Yield [%] $9(= 12) + 10(= 11)$	Ratio 9/10	9 (purified)						
				Yield [%]	d.e. $\lceil \frac{9}{6} \rceil$	Configu- ration	¹ H-NMR (δ [ppm])			
							CH ₃ (8')	$CH3-C(2)$		
\mathbf{a}	Me	45	90:10	$-$ ^a)	$-$ ^a)	2R	1.17(s)	1.22(d)		
b	Et	92	95:5	70 ^b	97.2	2R	1.16(s)	1.20(d)		
$\mathbf c$	Pr	80	97:3	70 ^b	99.6	2R	1.14(s)	1.19(d)		
d	i-Pr	93	95.6:4.4	84°	98.0	2R	1.13(s)	1.16(d)		
e	Bu	81	91.5:8.5	62°	100	2R	1.13(s)	1.17(d)		
$^{\mathrm{a}}$	Not purified.									
p^{\prime}	Flash chromatography.									
c		Crystallization.								

⁵) Compared to *Table 3, Entry c*, significantly lower induction $(\rightarrow (2R))$ was observed on protonation of the transient enolate **14** $(R^1 = H, R^2 = Pr)$ with MeOH (52% d.c.) or with 2,6-di(tert-butyl)-4-methylphenol (74% d.e.).

agree with their 'H-NMR spectra and were confirmed in the case of **9a** and **9b** by comparison with authentic samples **[716).** It is interesting to note that the 1,4-addition/ protonation $8\rightarrow 9$ *(Tables 3 and 4)* reveals a π -face discrimination at $C(\alpha)$ which is opposite to that of the 1,4-addition/methylation process $1 \rightarrow 4$.

Conjugate Additions of *Grignurd* **Reagents to a,P-Disubstituted (E)-Enoylsultams and Subsequent 'Enolate' Protonations.** - Encouraged by the excellent stereodifferentiations for $8\rightarrow 9$ with $R¹ = H$, we then studied the generation of two contiguous centers of chirality by submitting α , β -disubstituted (E)-enoylsultams to similar conjugate addition/ protonation conditions *(Scheme 3, Table 4).* **A** solution of an alkylmagnesium chloride $(2.2 \text{ mol-equiv. in Et, O})$ was added at -80° to a solution of an enoylsultam **8** $(R¹ = alkyl)$ in Et,O/THF *5:* 1. To complete the *Michael-* type reaction, the mixture was slowly warmed to -40° and kept at -40° overnight. Protonation at -70° using again an emulsion of sat. aq. NH₄Cl solution in THF provided mixtures of 2–3 of the 4 possible stereoisomeric products **9-12** with isomer **9** largely prevailing. In each case *(Table 4),* the major isomer **9** was efficiently purified by flash chromatography and crystallization⁷). Mild saponifica-

Table 4. *Conjugate Addition of* R'MgCl *to cc,B-Disubstituted* (*El-Enoylsultams and Subsequent 'Enolate' Proto* $r^{0.9} + 11 + 12$

	R ¹	R^2	Yield [%] $9 + 10 + 11 + 12$	Ratio 9/10/11/12	9 (erystallized)					
					Yield $\lceil \frac{9}{6} \rceil$	Purity [%]	Configu- ration	¹ H-NMR (δ [ppm])		
								CH ₃ (8')	$CH_3-C(2)$	
ſ	Me	Et	90	99.0:0:1.0:0	81	99.7	2R.3R	1.15(s)	1.18(d)	
g	Me	Bu	73	98.2:0.2:0.9:0.7	66	100	2R,3R	1.19(s)	1.22(d)	
h	Me	Ph	$-$ ^a)	97.0:0:2.4:0.6	48	99.3	2R,3S	1.10(s)	1.21 (d)	
j.	Et	Bu	90	97.0:0:2.6:0.4	78	100	2R.3R	1.12(s)	1.13(d)	
	Bu	Et	82	96.5:0:1.4:2.1	60	99.8	2R.3S	1.06(s)	1.07(d)	

tion of 9f furnished sultam auxiliary **1** and **(2R,3R)-2,3-dimethylpentanoic** acid [151 which exemplifies the overall transformation $\mathbf{II} \rightarrow \mathbf{V}$ and serves as evidence for the (2R,3R)-configuration of **9f.** Products **9g** and **9i** were readily shown to possess also the (2R,3R)-topicity by identifying them with the above described addition/methylation products **4a** and **4b,** respectively. All products **9** display 'H-NMR spectra in accord with a (2R)-configuration4). This applies also to the 3-phenyl derivative **9h** which has been ascribed the (3S)-configuration based on analogy. Unequivocal proof for the $(2R,3S)$ -chirality of $9j$ was obtained by means of an X-ray-diffration analysis *(Figure)* accounting for the known configuration of the camphor-derived sultam moiety as well as for a least-squares refinement of the absolute-structure parameter x [16].

Accordingly, *Table 4* reveals synthetically relevant inductions at $C(\beta)$ and $C(\alpha)(\rightarrow (2R))$ of 9 which derive solely from the auxiliary **I**. The synthesis of 9i and 9i thus exemplify the option to alternate the developing configuration at $C(\beta)(\rightarrow (3R)$ or (3S))

 6 For comparison *(GC,* 'H-NMR), mixtures **9c/10c** and **9d/10d** were prepared **by** acylation of sultam **I** with the corresponding racemic acyl chlorides.

^{7,} The configurations of the minor products were not assigned except for **11f**, **11g**, **12g**, and **12j** $(= 9i)$ (GC comparison with authentic samples, **see** *Exper. Put).*

by permutation of R' and the *'Grignard* substituent' R2 independent of the stereochemical outcome at $C(\alpha)(\rightarrow (2R))$.

Stereochemical Rationalization, Regio- and Face-Selective Addition of Ethylmagnesium Chloride to $[(E, E)-2, 4-Hexadienov]$ **sultam.** $-$ The stereoface differentiations observed throughout this work are consistent with the transition-state topologies presented in *Schemes 4* and 5. Focussing this discussion first on the 1,4-additions to $C(\alpha)$ -unsubstituted enoylsultams **1,** it appears that the conformation found in crystalline **1,** with $R' = Me (C=O/SO, antiperiplanar, C=O/C(\alpha), C(\beta)$ *s-cis*, and a pyramidal N-atom) [17], differs from that of transition state 1^* (Scheme 4) which features rather a Mg-chelated SO,/C=O synperiplanar disposition.

This explains the need of > *2* mol-equiv. of alkylmagnesium chloride for achieving successful 1,4-additions to enoylsultams 1 and 8. We thus assume delivery of \mathbb{R}^2 to 1^+ from the bottom side, opposite to the lone pair on the N-atom8) *via* a 6-membered cyclic

⁸) The possibility of a π -face-directing bias of the pyramidal N-atom on the electrophilic attack of enamines and N,O-ketene acetals was first evoked by *Eschenmoser* and coworkers [18]. Similar stereoelectronic control of nueleophilic 1,4-additions to enoylsultams **1** and **8** may be operational. The above postulate relates even more closely to the stereoface-selective reactions of electrophiles with 0-metalated N.0-ketene acctals such as **13** and other reported examples [7] [8] **[19].**

mechanism [20] which is compatible with the depicted $C=O/C(\alpha)$, $C(\beta)$ *s-cis* conformation. During this process, the C=O/C(α),C(β) s-cis conformation apparently translates into the 'enolate' (Z) -configuration of 13⁹). To explain the subsequent stereoface-selective methylations $13 \rightarrow 4$, we propose for 13 the depicted conformation which parallels that of the O-pivaloyl derivative of **13** with $R^1 = Pr$ and $R^2 = H$ [9] [22]. Sterically or stereoelectronically⁸) auxiliary-directed electrophilic attack from the bottom side of 13 provides the $(2R)$ -products 4 with good π -face differentiation despite the counteracting bias of the $C(\beta)$ -center $(R^2 > R^1)$.

Examination of *Scheme* 3 and *Table 4* reveals that *Grignard* reagents undergo 1,4-additions to α, β - disubstituted (E)-enoyl sultams 8 from the same π -face as they do with the β -monosubstituted (E)-enoyl derivatives 1. We believe that the C=O/SO, antiperiplanar and $C=O/C(\alpha)$, $C(\beta)$ *s-trans* conformation of **8**, as indicated by X-ray evidence [9] [17], is irrelevant in this reaction series. It is much more plausible to assume again a chelation by Mg (C=O/SO, synperiplanar) and the operation of a cyclic transition state $C=O$ \cdot Mg \cdot \cdot R² \cdot \cdot C(β) which enforces the $C=O/C(\alpha)$, C(β) s-cis conformation of $\mathbf{8}^*$, regardless of the $C(\alpha)$ -methyl/bornane repulsion *(Scheme 5)*.

This reactive *s-cis* conformation of $8*$ would entail the stereoselective formation of (Z)-enolates **149)** which was confirmed by 'H-NMR and X-ray studies of the 0-acetyl derivative of 14 and its (E)-isomer ($\mathbb{R}^1 = H$, $\mathbb{R}^2 = Et$) [9] [22]. To rationalize the face differentiation on protonations of (Z)-enolates **14** (which is opposite to that of **13),** we propose a conformation with the lone electron pair on the N-atom in the nodal plane of the π -system. This geometry, similar to that of the (E) -O-acetyl derivative of **14** [9] [22], minimizes repulsion between the $C(\alpha)$ -methyl group and the auxiliary unit. Furthermore, chelalion of the enolate and the lower SO, 0-atom by Mg as well as association of the latter with H₂O complies plausibly with a protonation from the $C(\alpha)$ -Si(front) face of 14.

Referring again to the postulated six-membered cyclic transition states 1^* and 8^* , experimental support was provided by the regioselective 1,4-addltion of EtMgCl to (E,E)-hexadienoylsultam **15** which gave, after crystallization, the (E)-3-ethyl-4-hexenoyl product **16 (69%** yield) in *ca.* 100% d.e. *(S'c'cheme 6).* Saponification of **16** (LiOH, aq. THF, r.t.) and hydrogenation of the resulting $(E,3R)$ -3-ethyl-4-hexenoic acid (H_2, Rh) $A1₂O₃$ gave the known (3S)-3-ethylhexanoic acid [23] which revealed readily the (3R)-

⁹) For the influence of $C(\alpha)$ - and $C(\beta)$ -substituents on the s-cis/s-trans-conformation of α, β -unsaturated ketones and their stereoselective conversion to (Z) - or (E) -enolates by conjugate hydride additions, see [21].

configuration of 16. However, it is the obvious preference for $C(\beta)$ -addition which reflects the steric constraints of a cyclic transition state since attack at $C(\delta)$ would imply an 8-membered ring containing a *trans*- olefinic bond. In contrast, hydride was delivered by *L-Selectride* (= LiBH(sec-Bu)₁) regioselectively at $C(\delta)$ of **15** affording *N*- $[(E)$ -3-hexenoyllsultam **17** [9] [14]. It is worth noting that the smooth and selective transformation **15→16** is of interest for organic synthesis in view of possible π -face-selective functionalizations at the olefinic C-atoms and at $C(\alpha)$.

Conclusions. – The evidence presented here leaves no doubt about the potential of the tandem alkylmagnesium addition/enolate trapping for the synthesis of enantiomerically pure compounds. It exemplifies once more the wide applicability and practical advantages of the sultam **I** (and its enantiomer) as a chiral auxiliary [4] [9]. Further work on the scope and limitations of this new methodology is in progress.

Financial support of this work by the *Swiss National Science Foundutiun, Sundoi AG,* Basel, and *Giuuudun SA,* Vernier, is gratefully acknowledged. We also thank Mr. *J. P. Suulnier.* Mr. *A. Pinto,* and Mrs. *D. Clement* for NMR and MS measurements and, particularly, Mr. *M. von Arx* for his valuable technical assistance.

Expcrimental Part

General. All reactions were carried out under Ar with magnetic stirring, unless otherwise specified. Solvents were dried by distillation from drying agents as follows: Et₂O (Na), THF (Na), toluene (K). MeMgCl (3*M* in Et₂O) and EtMgCl (2M in Et₂O) were purchased from *Aldrich.* Solns. $(0.8-1.2M)$ of the other *Grignard* reagents in Et₂O were prepared from alkyl chlorides and Mg powder (Merck, 0.1-0.3 mm). Their concentrations were determined by addition of a measured excess of aq. HCI and 'back-titration' with 0.1N aq. NaOH using phenolphthalein as indicator. 'Workup' denotes extraction with an org. solvent, washing *of* the org. phase with sat. aq. NaCl soh, drying (MgSO₄), and evaporation (rotatory evaporator). Column flash chromatography (FC): SiO₂ (Merck 9385). GC: *Hewlett-Packard 5790A*, integrator HP 3390, capillary column (fused silica, 0.2 mm i.d., 12 m), *OV-1*, 10 psi H_2 ; A: 150°, 10 min \rightarrow 10°/min \rightarrow 250°; B: 150°, 10 min \rightarrow 7.5°/min \rightarrow 250°; C: 160°, 10 min \rightarrow 7.5°/min \rightarrow 250°; D: 160°, 10 min \rightarrow 10°/min \rightarrow 250°, unless otherwise specified; retention time in min (area %). M.p.: *Kofler* hot stage; uncorrected. *[a]:* Perkin-Elmer-241 polarimeter; in CHCI,, unless otherwise specified. IR: Perkin-Elmer *257,* CHCl₃ unless otherwise specified. ¹H-NMR at 360 MHz, unless otherwise specified; ¹³C-NMR at 50 MHz, unless otherwise specified; standard tetramethylsilane ($\delta = 0$ ppm); *J* in Hz. MS: m/z (rel.-%).

 N -Enoylsultams $1. - (2R)$ -Bornane-10,2-sultam (I). Auxiliary **I** [4] [9] [17] was prepared from $(+)$ -(1*S*)-camphor-10-sulfonyl chloride following the procedure described for the preparation of its antipode [24].

 $N-f(E)-2-Butenovl/bornane-10,2-sultam (1, R¹=Me)$. Prepared according to [10] [24].

 $N-f(E)-2-Pentenovilbornane-10,2-sultan (1, R¹ = Et)$. A soln. of **I** (3.4 g, 15.8 mmol) in toluene (40 ml) was added dropwise at r.t. *to* a stirred suspension of NaH (23.8 mmol) in toluene (42 ml). After 1 h, (E)-2-pentenoyl chloride (3.79 g, 32 mmol) was added slowly, and the mixture was stirred at r.t. for 3 h. Workup, FC (hexane/ EtOAc 85: 15), and crystallization (EtOH) gave **1** ($R^1 = Et$; 3.63 g, 78%). GC (A): 14.05. M.p. 130-131°. IR: 2970, 1680, 1640, 1480, 1455, 1415, 1375, 1235. ¹H-NMR: 0.94(s, 3H); 1.06(t, J = 7.5, 3H); 1.16(s, 3H); 1.3-1.45(2H); ¹H); 6.56 *(dt, J* = 15, 2, 1 H); 7.15 *(dt, J* = 15, 6.5, 1 H). I3C-NMR: 164.20 **(s);** 152.19 *(d);* 119.99 *(d);* 65.09 *(d);* 53.12(/); 48.42 (s); 47.75 (s): 44.66 *(d);* 38.48 *(1):* 32.80 *(I);* 26.47 *(t);* 25.66 *(t);* 20.84 (y); 19.90 *(4);* 12.17 *(4).* MS: 297 (1, C₁₅H₂₃NO₃S⁺), 268 (0.6), 233 (1), 218 (1.5), 204 (7), 83 (100), 55 (24). HR-MS: 297.1411 (C₁₅H₂₃NO₃S⁺, calc. 297.1400). 1.83-1.96(3H); 2.05-2.2(2H); 2.23-2.33 (2H); 3.45 *(d, J* = 13.5, IH); *3.53(d, J* 13.5, 1 H); 3.94(dd, *J=* 8, 5.5,

N- $(2-Methyl-2-propenoyl/bornane-10,2-sultam (8, R¹ = H)$. Following the procedure for the preparation of **1** $(R¹ = Et)$, successive treatment of **I** (500 mg, 2.32 mmol) with NaH (3.48 mmol) and 2-methyl-2-propenoyl chloride (0.46 ml, 4.71 mmol), workup, FC (hexane/EtOAc 85: 15), and crystallization (EtOH) furnished **8 (R'** = H; 502 mg, 76%). GC (A): 8.60. M.p. 149%150". 1R: 2970, 1680, 1640, 1455, 1415, 1340. 'H-NMR: 1.00 **(s, 3H);** 1.22(~, 3H); 1.3-1.5(2H); 2.0(d,J = 1.5, 3H); 1.8-2.1 (5 H); 3.42(d, *J=* 14, 1 H);3.55(d, *J=* 14, **1** H);4.06 *(dd, J=* 8, *5.5,* 1 H); 5.6X *(d. J=* 1.5, I H); 5.72 **(s, 1** H). 13C-NMR: 171.20 **(s);** 138.88 **(s);** 124.27 *(1);* 65.38 *(d);* 53.47(t); 47.95 **(s);** 47.62 **(s);** 45.16 *(d);* 38.27 *(t);* 33.17 *(t);* 26.40 *(t);* 21.27 (y); 19.81 (y); 18.67(y). MS: 283 (0.3, $C_{14}H_{21}NO_3S^+$), 214 (1.3), 204 (2.4), 191 (3.9), 176 (4.7), 162 (0.9), 150 (1.8), 134 (6.2), 119 (3.1), 108 (8.1), 69 (100). HR-MS: 283.1240 ($C_{14}H_{21}NO_3S^+$, calc. 283.1243).

 $N-f(E)-2-Methyl-2-butenoyl/bornane-10,2-sultam (8, R¹ = Me)$. Prepared according to [10].

 $N-f(E)-2-Methyl-2-pentenoyl/bornane-10,2-sultam (8, R¹ = Et)$. Following the procedure described previously [10] for the preparation of $N-[E]-2$ -hexenoyl]bornane-10,2-sultam, $(E)-2$ -methyl-2-pentenoic acid (1.14 g, 10 mmol) was converted (oxalyl chloride) into its acyl chloride which served *to* acylate J(1.06 g, *5* mmol), giving after crystallization (hexane), **8** (R' = Et; 1.32 g, 85%). GC (150", 10"/min-+270"): 5.62. **M.p.** 131-132". IR: 2970, 1680,1485,1460,1415,1395,1375,1335,1310,1290,1250,1185, 1170,1130,1100,1060, 1035,985. 'H-NMR: 1.00 **(s,** 3H); 1.07 *(t. J=* 7.5, 3H); 1.25 **(s,** 3H); 1.40 *(dr, J* = 9, 7.5, 2H); 1.87 (br. **s,** 3H); 1.83-2.08 (SH); 2.13-2.33 (2H); 3.37 (d, J = 14, 1H); 3.47 (d, J = 14, 1H); 4.03 (dd, J = 7.5, 5, 1H); 6.22 (dt, J = 9, 1.5, 1H).¹³C-NMR: 172.44 (s); 143.97 *(d);* 129.88 *(d);* 65.37 *(d);* 53.48 *(t);* 47.79 **(s);** 47.65 **(s);** 45.19 *(d);* 38.20 *(t);* 33.17 (1); 26.50 *(t);* 21.78 *(1);* 21.29 *(4):* 19.88 *(4);* 12.85 *(4);* 12.75 *(4).* MS: 311 (12. C,,H,,N03St'), 247 (7), 232 (7), 218 (29), 204 (7), 190 (8), 152 (9), 97 (100), 69 (40). HR-MS: 311.1544 (C₁₆H₂₅NO₃S⁺⁺, calc. 311.1555).

 $N-f(E)-2-Methyl-2-heptenoyl/bornane-10,2-sultan (8, R¹ = Bu)$. At r.t., 2*M* AlMe₃ in hexane (3 ml, 6 mmol) was added dropwise to a soh. of I(961 mg, 4.47 mmol) in toluene (20 ml). After stirring for 15 min, ethyl (E) -2-methyl-2-heptenoate (1.08 g, 6.3 mmol) was added, and the resulting mixture was heated at 90° for 6 d. Workup and FC (hexane/EtOAc 82: 18) gave $8(R^1 = Bu$; 651 mg, 42%) which was crystallized (hexane). GC (C): 18.50. M.p. 88°. IR (CCl₄): 2950, 2940, 2850, 1675, 1325. ¹H-NMR: 0.82 (t, J = 7, 3H); 0.90 (s, 3H); 1.16 (s, 3H), 4.00 *(dd. J=* 7.5, 4.5, IH); 6.26 *(d4,J=* 7.5, 1.5, IH). I3C-NMR: 172.38 **(s);** 142.65 *(d):* 130.35 **(s);** 65.35 *(d);* 53.47(t); 47.76(s); 47.60(s); 45.17(d); 38.17(t); 33.15(t); 30.49(t); 28.22(t); 26.45(t); 22.36(t); 21.24(q); 19.83 82 (13), 69 (22), 55 (53). HR-MS: 339.1912 (C₁₈H₂₉NO₃S⁺, calc. 339.1916). 1.2-1.43 (6H); 1.80 *(d, J* = 1.5, 3H); 1.81-2.0 (5H); 2.05-2.25 (2H); 3.34 *(d, J* = 14, **1** H); 3.44 *(d, J=* 14, I H); *(q)*; **13.84** *(q)*; **12.85** *(q)*. **MS**: 339 (3, C₁₈H₂₉NO₃⁺), 324 (1), 218 (10), 135 (11), 126 (22), 125 (100), 107 (7), 95 (11),

N-[*(E,E/-2,4-Hexadirnoyl/hornane-ZU,2-sultam* **(15).** A mixture of sorbic acid (100 mg, 0.9 mmol) and oxalyl chloride (567 mg, 4.5 mmol) was stirred at r.!. Tor 12 h and then evaporated. Bulb-to-bulb distillation of the residue (70-75" (bath)/lO Torr) furnished (E,E)-2,4-hexadienoyI chloride **(1** 12 mg, 84%). Following the procedure described for the preparation of $1 (R^1 = Et)$, acylation of $I(178 \text{ mg}, 0.83 \text{ mmol})$ with (E, E) -2,4-hexadienoyl chloride (I 12 mg, 0.75 mmol), workup, FC (hexane/EtOAc 4: l), and crystallization (hexane) gave **15** (161 mg, 69%). GC *(C):* 18.67.M.p. 110-111".IR:2970,2920,2890, 1680, 1640, 1610, 1340, 1270, 1250, 1210, 1160, 1130, **1115,** 1060, 1000. 'H-NMR: 0.88 **(s,** 3H); 1.10 **(s,** 3H); 1.23 -1.45 (2H); I.% 1.93 (6H); 1.98-2.35 (2H); 3.41 (d, $J=$ 13.5, 1H); 3.47 (d, $J=$ 13.5, 1H); 3.92 (dd, $J=$ 7.5, 5, 1H); 6.12–6.32 (2H); 6.50 (d, $J=$ 15, 1H); 7.35 (dd, *J* = 15, 10, 1H). ¹³C-NMR: 164.50(s); 145.87(d); 141.10(d); 130.01(d); 118.21(d); 65.10(d); 53.09(t); 48.36(s); 47.72 **(s);** 44.62 *(d);* 38.46 *(I);* 32.76 *(I);* 26.45 *(1);* 20.77 *(4);* 19.86 *(4);* 18.74 (4). *MS:* 309 (8, CI6H2,NO3St.), 294 (2) , 135 (3), 95 (100), 67 (70). **HR-MS**: 309.1369 (C₁₆H₂₃NO₃S⁺⁺, calc. 309.1399).

Conjugate Additions of *Grignard* Reagents to β -Substituted (E) -Enoylsultams and Subsequent 'Enolate' **Protonation.** *-General Procedure.* At *-80" ca.* 1 -2N alkylmagnesium chloride (2.5 mol-equiv.) in Et,O was added dropwise to 0.07 **M 1** (1 mol-equiv.) in THF. The mixture was stirred at -80° for 3 h, then quenched at -60° with sat. aq. NH₄Cl soln., subjected to workup and FC thereby avoiding a separation of isomeric 1,4-adducts (as controlled by GC).

Addition of EtMgCl to **1** (R^1 = Me). Using the general procedure, **1** (R^1 = Me; 50 mg, 0.176 mmol) furnished **2a/3a (44 mg, 80%).** GC (A): 14.10 (94.55), 14.19 (5.45). The main product 2a was identified as N-[/3R)-3-methyl*pentanoyl/hornune-l0,2-sul1um* by comparison (GC, 'H-NMR) with an authentic sample obtained by catalytic hydrogenation of *N-* **[(E)-3-methyl-2-pentenoyl]bornane-** 10,2-sultam [1 I].

Addition of PrMgCl to $1 (R^1 = Me)$. Using the general procedure, $1 (R^1 = Me; 26$ mg, 0.092 mmol) gave $2b/3b$ (27 mg, 90%). GC *(A):* 15.65 (92.6), 15.78 (7.4). The main product **2b** was identified as *N-[(3R)-3-methylhexunoyl]bornane-l0,2-sultam* by comparison (GC, ¹H-NMR) with an authentic sample obtained by catalytic hydrogenation of *N-* **[(E)-3-methyl-2-hexenoyl]bornane-** I0,2-sultam [l I].

Addition of i-PrMgCl to **1** (R^1 = Me). Using the general procedure, **1** (R^1 = Me; 21 mg, 0.074 mmol) gave **2c/3c** (22 mg, 92%). GC *(A):* 15.54 (86.2), 15.65 (13.8). The main product **2c** was identified as N-/(*R)-3,4-dimethylpentanoyl/bornune-IU,2-sultam* by comparison (GC, *'H-NMR)* with an authentic sample obtained by catalytic hydrogenation of N ⁻ $[(E)$ -3,4-dimethyl-2-pentenoyl]bornane-10,2-sultam $[11]$.

Addition of BuMgCl to $1 (R^1 = Me)$. Using the general procedure, $1 (R^1 = Me; 100$ mg, 0.35 mmol) gave $2d/3d$ (94mg, 78%). GC(A): 17.21 (93.15), 17.36(6.85). Themain product **2d** wasidentified as *N-[(3R)-3-rnethylheptanoyl]bornane-I0,2-sultam* by comparison (GC, ¹H-NMR) with an authentic sample obtained by catalytic hydrogenation of **N-[(E)-3-methyl-2-heptenoyl]bornane-** 10,2-sultam [l I].

Addition of Hexylmagnesium Chloride to $1 (R^1 = Me)$. Using the general procedure, $1 (R^1 = Me)$; 20 mg, 0.07 mmol) gave **2e/3e** (19 mg, 73%). GC *(A):* 19.93 (91.9), 20.04 (8.1). The main product **2e** was identified as *N-[(3R)-3-methylnonanoyl]hornane-10,2-sultam by comparison (GC, ¹H-NMR) with an authentic sample ob*tained by catalytic hydrogenation of **N-[(E)-3-methyl-2-nonenoyl]bornane-l0,2-sultam** [l 11.

Addition of Octylmagnesium Chloride to **1** (R^1 = Me). Using the general procedure, **1** (R^1 = Me; 20 mg, 0.07 mmol) gave **2f/3f** (22 mg, **81** %). GC (A): 22.23 (83.1), 22.34 (8.3). The main product **2f** was identified as N- f (3R)-3-methylundecanoyl]bornane-10,2-sultam by comparison (GC, ¹H-NMR) with an authentic sample obtained by catalytic hydrogenation of **N-[(E)-3-methyl-2-undecenoyl]bornane-** 10,2-sultam [111.

Addition of BuMgCl to **1** $(R^1 = Et)$. Using the general procedure, **1** $(R^1 = Et$; 500 mg, 1.68 mmol) gave *N-[(3R)-3-ethylheptanoyl]bornune-lU,2-sultu~n* **(2g;** 531 mg, 89%), oil. *GC* **(A):** 16.96 (99). *1R:* 2960,2930,2880, 2860, 1690, 1480, 1460, 1415. ¹H-NMR: 0.82(t, J = 7.5, 6H); 0.92(s, 3H); 1.12(s, 3H); 1.14-1.42(10H); 1.8-2.0 $(4H)$; 2.03-2.1 $(2H)$; 2.54 $(dd, J = 16, 6.5, 1 H)$; 2.68 $(dd, J = 16, 7, 1 H)$; 3.43 $(d, J = 14, 1 H)$; 3.50 $(d, J = 14, 1 H)$; 3.88 *(I, J=* 7, IH); signals at 2.53 *(dd, J=* 16, 7, 0.05H); 2.69 *(dd, J=* 16, 7, 0.05H) assigned to isomer **3g.** 'k-NMR: 171.90 (3); 65.16 *(d);* 52.95 *(1);* 48.17 (s); 47.62 (s); 44.59 *(d);* 39.82 *(I);* 38.50 *(I);* 35.98 *(d);* 32.94 (t); 32.76 *(1);* 28.56 (t); 26.38 *(1);* 26.18 *(1);* 22.92 *(1);* 20.71 (4); 19.81 *(4);* 13.99 *(4);* 10.82 *(4). MS:* 356 *(0.3,* $[C_{19}H_{33}NO_3S + 1]^+$, 355 (0.14, $C_{19}H_{33}NO_3S^+$), 340 (0.17), 326 (0.7), 312 (0.46), 298 (0.77), 257 (25), 151 (7), 135 (60), 107 (11), 93 (11), 71 (61), 57 (100). *HR-MS:* 355.2186 (C₁₉H₃₃NO₃S⁺⁺, calc. 355.2181).

Conjugate Additions of *Grignard* Reagents to β -Substituted (E) -Enoylsultams and Subsequent 'Enolate' **Methylation.** $- N-f(2R,3R)-2,3-Dimethylheptanoyl/bornane-10,2-sultan (4a). At -80° , 1.0 M BuMgCl in Et₂O$ (5.0 ml, 5.0 mmol) was added dropwise to $1 \text{ (R}^1 = \text{Me}$; 500 mg, 1.76 mmol) in THF (25 ml). After stirring at -78° for 3 h, a sample was withdrawn and quenched with sat. aq. *NH,C1* soh. *GC* (B): 17.33 (84.3), 17.44 (7.9). Addition of **Me1** (1.1 ml, 17.7 mmol) and *HMPA* (1.75 ml, 10.0 mmol) at -80" to the non-quenched reaction mixture, warming up to r.t. within 16 h, and workup afforded a crude oil. GC (B): 17.61 **(4.3),** 17.79 (7.8), 18.24 (78.9). FC (hexane/EtOAc 9: **1)** furnished a mixture of stereoisomeric **N-(2,3-dimethylheptanoyl)sultams** (500 mg, 80%; GC **(R):** 17.62 (I .4), 17.82 (8.6), 18.37 (86. I)) from which **4a** was isolated by crystallization (hexane; 298 mg, 48 %). GC (B): 17.79 (2.5), 18.20 (97.5). M.p. 91-92". IR: 2970, 2940, 1695, 1460, 1390, 1330, 1265, 1132. *'H-NMR:* 0.91 *(I,* $J = 7.5$, 3H); 0.95 (d, $J = 6.8$, 3H); 0.99 (s, 3H); 1.19 (s, 3H); 1.22 (d, $J = 7$, 3H); 1.08-1.62 (8H); 1.8-2.0 (4H); "C-NMR: 176.23 (3); 65.02 *(d);* 53.19 *(1);* 48.08 (s); 47.66 **(s);** 45.85 *(d);* 44.55 *(d);* 38.41 *(t);* 34.65 *(d);* 32.79 (t); 32.37 *(I);* 28.56 *(I);* 26.36 *(I);* 22.91 *(I);* 20.78 *(4);* 19.81 *(4);* 17.76 *(4);* 16.55 (y): 14.02 *(4).* **MS:** 355 (< 1, 2.07-2.15 (2H); 2.92 *(4, J=* 7, 8.8, 1H); 3.48 *(d, J=* 14, IH); *3.55 (d, J=* 14, IH); 3.95 *(t, J=* 6.5, IH).

 $C_{19}H_{33}NO_3S^+$), 340 (1.5), 271 (50), 135 (40), 113 (50), 71 (90), 57 (100). HR-MS: 271.1232 $(M - C_6H_{12}]^+$,

 $C_{13}H_{21}NO_3S^+$, calc. 271.1231).

N-[(2R,3R)-3-Ethyl-2-methylheptanoyl]bornane-10,2-sultam (4b). At -85° *, 1.0* M *BuMgCl in Et₂O (1.5 ml,* 1.5 mmol) was added dropwise to a soln. of $1 (R¹ = C₂H₅; 160 mg, 0.534 mmol)$ in THF (8 ml). After 2 h at -85° , the mixture was allowed to warm up to -65° within 3 h. A withdrawn sample was quenched with sat. aq. NH₄Cl soh. and examined by **GC** (B): 16.96 (92.4). Then, Me1 (0.24 ml, 3.86 mmol) and HMPA (0.53 ml, 3 mmol) were added to the non-quenched reaction mixture at -85". The mixture was slowly (within 16 h) warned **up** to r.t. and submitted to workup to give a crude oil. GC (B): 18.31 (12, **2g),** 18.51 (2.5), 18.64 (6.5), 18.96 (67.8). FC gave a mixture of stereoisomeric **N-(3-ethyl-2-methylheptanoyl)sultams** (1 14mg, 58%; GC (B): 18.63 @.I), 18.96 (88.6)) from which4b (major) was isolated bycrystallization (hexane; 72mg, 36%). GC (C): 19.61 (l.7), 19.94 (98.3). **M.p.** 91-92". 1R (CC1,): 2960,2940, 2880, 1700, 1290, 1210. 'H-NMR: 0.82 *(I, J* = 7.5, 3H); 0.84 *(t, J* = 7.0, 3H); 0.92 $(s, 3H)$; 1.12 $(s, 3H)$; 1.13 $(d, J = 7, 3H)$; 1.14-1.56(10H); 1.72 $(m, 1H)$; 1.78-2.0(3H); 2.02-2.08(2H); 3.00 $(dq,$ *J* = 8.5, 6, 1 H); 3.42 *(d, J* = 13.5, 1 H); 3.50 *(d, J* = 13.5, 1 H); 3.90 *(t, J* = 6, 1 H). ¹³C-NMR: 176.31 *(s)*; 65.02 *(d)*; 53.12 *(t);* 48.08 **(s);** 47.61 (3); 44.49 *(d);* 43.24 *(d);* 40.17 *(d);* 38.39 *(t);* 32.72 *(f);* 27.94 *(t);* 27.54(1); 26.36 *(t);* 24.21 *(t);* 23.15 *(1);* 20.73 *(4);* 19.80 *(4);* 16.28 *(4);* 14.04 *(4);* 11.37 *(4).* MS: 369 (0.14, C,,H,,NO,S+'), 354 (0.5), 340 (0.2), 326 (0.29, 312 (0.14), 290 (0.28), 271 (34), 155 (14), 135 (51), 127 (30), 107 (14), 93 (IS), 85 (49), 71 (IOO), 57 (81). HR-MS: 354.2097 ($[C_{20}H_{35}NO_3S - CH_3]^+$, calc. 354.2105).

Conjugate Additions of *Grignard* **Reagents to N-(Methacryloy1)sultam 8 (R'** = **H) and Subsequent 'Enolate' Protonation.** – *General Procedure.* At -80° 1-2m alkylmagnesium chloride (2 mol-equiv.) in Et₂O was added dropwise to 0.07 m 8 (R^1 = H; 1 mol-equiv.) in toluene. Then, the mixture was allowed to reach r.t. within 15 min. After recooling to -95° (MeOH/liq. N₂), the reaction was quenched with an emulsion of THF/sat. aq. NH₄Cl and worked up to give a crude oil (analyzed by GC) which was purified by FC without altering the stereoisomer ratios (GC).

N-/(2R)-2-Methylbutunoyl]bornune-10,2-sultum **(9a).** Using the general procedure, addition of MeMgCl to **8** $(R¹ = H; 65 mg, 0.23 mmol)$, subsequent protonation, and FC gave I (25%) and a 9:1 mixture ($\rm{^1H\text{-}NMR}$) 9a/10a (31 mg, 45%). GC (A): 10.61 (99). The major **9a** was identified by comparison ('H-NMR, I3C-NMR) with an authentic sample obtained *uiu* conjugate addition of *L-Selectride* to *N-* [(E)-2-butenoyl]bornane- 10,2-sultam followed by methylation **(Mel,** HMPA) of the intermediate enolate [7] [141. The minor **10a** was identified by comparison with authentic samples obtained either *via* conjugate addition of *L-Selectride* to *N*-[(E)-2-methyl-2-butenoyl] bornane-10,2-sultam followed by protonation (aq. NH,CI), or by acylation of **I** with (+)-(S)-2-methylbutyric acid [71[141.

N-[(2R)-2-MethylpentnnoyI~bornune-IO,2-suItum **(9b).** Using the general procedure, addition of EtMgCl to **8** $(R¹ = H; 33 mg, 0.12 mmol)$ and subsequent protonation gave a mixture **9b/10b** (31 mg, 92%). GC (A): 12.83 (4.8), 13.1 **1** (93.1). FC furnished the major **9b(26** mg, 70%; GC (A): 12.88 (1.4). 13.10 (98.6)), identified by comparison with an authentic sample obtained *uiu* addition of *L-Selectride* to *N-* **(2-propylacryloyl)bornane-lO,2-sultam** [7] $[14]$.

N-~(2R)-2-Methylhexanoyl]bornane-lO,2-sultum **(9c).** Using the general procedure, addition of PrMgCl to **8** (R' = H; 629 mg, 2.22 mmol) and subsequent protonation gave **9c/lOc** (579 mg, 80%). GC (A): 14.32 (2.8), 14.69 (91.8). FC (hexane/EtOAc 14: 1) furnished the major **9c** (506 mg, 70%). GC (A): 14.32 (0.2), 14.62 (99.8). **M.p.** 87-88". 1R: 2960,2940,2880,2860, 1695, 1480, 1470, 1460, 1415. 'H-NMR: 0.86 *(t, ^J*= 7.5, 3H); 0.95 **(s,** 3 H); 1.14 $(s,3H)$; 1.19 $(d, J = 7,3H)$; 1.2-1.46 (7H); 1.7-1.96 (4H); 2.03-2.1 (2H); 3.06 (m, 1H); 3.44 (d, J = 14, 1H); 3.52 $(d, J = 14, \text{1 H})$; 3.90 $(t, J = 7, 1 H)$. ¹³C-NMR: 176.34(s); 65.03(d); 53.15(t); 48.19(s); 47.68(s); 44.56(d); 40.25 *(d);* 38.40 *(t);* 32.77 *(t);* 32.32 *(t);* 29.40 *(t);* 26.40 *(I);* 22.69 *(I);* 20.76 *(4);* 19.81 *(q);* 18.97 (y); 13.89 *(4).* MS: 328 $(1, [C_{17}H_{29}NO_3S + 1]^+)$, 327 (< 1, C₁₇H₂₉NO₃S⁺), 312 (1), 298 (1), 284 (3), 271 (12), 220 (2), 207 (0.4), 152 (7), 135 (12), 113 (29), 91 (20), 85 (100), 55 (20). HR-MS: 312.1609 ($C_{17}H_{29}NO_3S - CH_3^+$, calc. 312.1635).

N-[(2R)-2,4-Dimethylpentanoyl]bornane-10,2-sultam (9d). Using the general procedure, addition of i-PrMgCl to $8 (R^1 = H; 53 mg, 0.187 mmol)$ and subsequent protonation gave $9d/10d$ (57 mg, 93%). GC (A): 13.44 (4.4), 13.87 (95.6). FC and crystallization (hcxane) furnished the major **9d** (51 mg, 84%). **GC (A):** 13.43 (I), 13.88 (99). M.p. 104-105". IR: 2960,2940,2890, 1695, 1480, 1470, 1460, 1415, 1395, 1375, 1370, 1330, 1270. 'H-NMR: 0.84 *(d, J=* 6.5, 3H);0.88 *(d, J=* 6.5,3H); 0.94 (s, 3H); 1.13 **(s,** 3H); 1.14(m, 1 H); 1.16 *(d, J=* 7, 3H); 1.26-1.45 (2H); 1.56 (m, 1H); 1.75 (ddd, $J= 13.5$, 8.2, 6.2, 1H); 1.8-1.96 (3H); 2.0-2.08 (2H); 3.14 (m, 1H); 3.44 (d, *^J*= 13.5, 1 H); 3.52 *(d, J* = 13.5, 1 H); 3.89 *(t, ^J*= 6.5, **1** H). I3C-NMR: 176.20 *(3);* 65.07 *(d);* 53.09 *(t);* 48.20 **(s);** 47.66 **(s);** 44.50 *(d);* 41.59 *(t);* 38.37 *(t);* 38.24 *(d);* 32.73 *(t);* 26.39 *(t);* 25.90 *(d);* 22.81 *(4);* 22.50 *(9);* 20.74 *(4);* 19.80 *(q)*; 19.39 *(q)*. **MS**: 328 *(0.1*, $[C_{17}H_{29}NO_3S + 1]^+$), 312 *(0.4*), 284 *(2)*, 271 *(12)*, 220 *(2.5)*, 207 *(3)*, 152 *(5)*, 135 (14), 113 (31), 85 (100), 69 (10), 55 (12). HR-MS: 327.1868 ($C_{17}H_{29}NO_3S^+$, calc. 327.1870).

N- $/$ (2R)-2-Methylheptanoyl]bornane-10,2-sultam (9e). Using the general procedure, addition of BuMgCl to **8**(R^1 = H; 60 mg, 0.21 mmol) and subsequent protonation gave **9e/10e** (58 mg, 81%). GC (A): 15.54 (7.5), 15.88 (80.8). FC and crystallization (hexane) furnished the major **9e** (45 mg, 62 *YO).* GC **(A):** 15.88 (100). M.p. 97-98". IR: 2960, 2940, 2890, 2880, 2860, 1695, 1480, 1460, 1415. ¹H-NMR: 0.84(t, J = 7, 3H); 0.94(s, 3H); 1.13(s, 3H); 1.17 I H); 3.90(/, *J* = 6, I H). "C-NMR: 176.32 **(s);** 65.02 *(d);* 53.13 *(t);* 48.19 (s); 47.64 **(s);** 44.54 *(d);* 40.29 *(1);* 38.40 *(1);* 32.75 *(I);* 32.54 *(t);* 31.77 *(t);* 26.88 *(I);* 26.40 *(f);* 22.41 *(t);* 20.77 *(4);* 19.81 (y); 18.96 (y); 14.00 *(4).* MS: 342 (0.16, [C,,H,,NO,S + I]"), 326 (0.3), 284 (I), 271 (26), 152 (8). 127 **(21),** 99 (23), 57 (100). HR-MS: 284.1329 $(C_{18}H_{31}NO_3S - C_4H_9^+$, calc. 284.1338). *(d, J* = 7.3 H); 1.20- 1.44 (9 H); 1.70-1 .96 (4 H); 2.0-2.08 (2 H); 3.04 *(m,* **1** H); 3.44 *(d, J* = 14, 1 H); 3.50 *(d, J* = 14,

Conjugate Additions of *Crignard* **Reagents to a,P-Disubstituted (E)-Enoylsultams and Subsequent 'Enolate' Protonation.** *General Procedure.* At -80° , $1-2$ m alkylmagnesium chloride (2.2 mol-equiv.) in Et₂O was added dropwise at -80° to 0.07 **M 8** (R^1 = alkyl, 1 mol-equiv.) in Et₂O/THF 5:1. Then, the mixture was allowed to warm up to -40° within 1 h and stirred at -40° for 16 h. After recooling to -70° , the reaction was quenched by addition of an emulsion of THF/sat. aq. NH₄Cl soln. and worked up to give a crude mixture which was analyzed by GC and purified as indicated below.

N-/(2R,3R)-2,3-Dimethylpentanoyl/bornane-10,2-sultam (9f). Using the general procedure, addition of EtMgCl to $8 (R¹ = Me; 200 mg, 0.673 mmol)$ and subsequent protonation gave a mixture of stereoisomers. GC (B): 14.67(1), 15.13(99). FC furnished almost pure 9f (198 mg, 90% ; GC(B): 14.65(0.9), 15.09(99.1)) which was crystallized from hexane (160 mg, 81 %). GC (B): 14.78 (0.3), 15.28 (99.7). M.p. 118°. IR: 2970, 2880, 1690, 1520, 1330. 'H-NMR: 0.86 *(t, J* = 7.5, 3 H); 0.91 *(d, .I* = 6.8, **3** H); 0.95 (s, 3 H); 1.12 *(M,* 1 H); 1.15 (s, 3 **H);** 1.18 *(d, ^J*= 7, 3 **H);** 1.28-1.45 (2 H); 1.60 *(m,* 1 H); 1.78 *(m,* 1 H); 1.8-2.0 (3 H); 2.04-2.12 (2 H): 2.90 *(4. J* ⁼9, 7, I H); 3.45 (d, J = 14, 1 H); 3.52 (d, J = 14, 1 H); 3.93 (t, J = 6.5, 1 H). ¹³C-NMR: 176.18 (s); 65.00 (d); 53.18 (t); 48.08 **(s);** *47.66(s);45.48(d);44.55(d);* 38.42(/); 36.01 *(d);* 32.76(?); 26.38 (/);25.13(t);20.79 *(4);* 19.81 *(4);* 17.15 *(4);* 16.56 *(q)*; 10.67 *(q)*. MS: 328 (0.26, [C₁₇H₂₉NO₃S + 1]⁺), 327 (0.1, C₁₇H₂₉NO₃S⁺), 312 (0.8), 298 (0.46), 271 (39), 152 (15), 135 (51), 113 (47), 93 (24), 85 (100), 55 (50). HR-MS: 327.1872 (C₁₇H₂₉NO₃S⁺, calc. 327.1870).

N-/(2R,3R)-2,3-Dimethylheptanoyl]bornane-10,2-sultam (9g). Using the general procedure, addition of BuMgCl to $8 \times \text{R}^1 = \text{Me}$; 100 mg, 0.337 mmol) and subsequent protonation gave a mixture of stereoisomers. GC (B): 17.57 (0.9), 17.76 *(0.7),* 17.87 (0.2), 18.30 (98.2). FC furnished a mixture (87 mg, 73%; GC (B): 17.49 (0.9), 17.68 *(0.5),* 18.08 (98.6)) from which pure **9g** was crystallized (hexane; 79 mg, 66%). GC (B): 18.15 (100). M.p. 91 92". It was identical with **4a** by comparison (GC, 'H-NMR) and mixed m.p.

N-/(2R,3S)-2-Methyl-3-phenylbutanoyl]bornane-I0,2-sultam (9h). Using the general procedure, addition of PhMgCl to $8 (R¹ = Me$; 100 mg, 0.33 mmol) and subsequent protonation, workup and FC (hexane/EtOAc 8:1) gave unchanged **8** $(R^1 = Me)$ together with a mixture of stereoisomers. GC (D): 13.50 **(8,** $R^1 = Me$, 13), 19.37 (2), 19.83 (0.5), 20.41 (80). Crystallization from pentane furnished almost pure **9h** (61 mg, 48 %). GC (D): 19.45 (0.6), 19.91 (0.1), 20.60 (97.1). M.p. 175-176°. IR: 3070, 1690, 1340, 1190. ¹H-NMR: 0.89 (d, $J = 7$, 3 H); 0.92 (s, 3 H); 1.10 **(s,** 3 H); 1.21 *(d, J* = 7, 3 H); 1.26-1.45 (2 H); 1.82 1.96 **(3** H); 2.03-2.13 (2 **11);** 3.03 *(m,* 1 H); 3.26 *(m,* 1 H); 3.48 *(d, J* = 14, 1 **H);** 3.52 *(d, J* = 14, I **H);** 3.96 *(1, ^J*= 6, 1 H); 7.20-7.34 (5 H). "C-NMR: 175.89 **(s);** 144.50 (s); 128.41 *(d);* 127.74 *(d);* 126.35 *(d);* 65.06 *(d);* 53.21 (/); 48.22 (s); 47.70 **(,Y);** 46.98 *(d);* 44.59 *(d);* 42.60 *(d);* 38.38 *(1);* 32.80 *(t)*; 26.39 *(t)*; 21.13 *(q)*; 20.85 *(q)*; 19.84 *(q)*; 18.11 *(q)*. MS: 375 (3, C₂₁H₂₉NO₃S⁺⁺), 271 (14), 161 (12), 133 (67), 105 (100), 91 (70), 77 (22). HR-MS: 375.1870 ($C_{21}H_{29}NO_3S^+$, calc. 375.1872).

N-((2R.3 *R~-3-Ethyl-2-methylheptunoyl]hornune- J0,2-sultutn* **(9i).** IJsing the general procedure, addition of BuMgCl to $8(R^1 = Et; 135 mg, 0.43 mmol)$ and subsequent protonation gave a mixture of stereoisomers. GC (B): 18.52 (2.5), 18.66 (0.4), 18.99 (95.0). PC furnished 143 mg (90%; GC (B): 17.19 (2). 17.29 (0.9), 17.71 (96.9)) which were crystallized from hexane to give pure 9i (125 mg, 78 %). GC (B): 19.05 (100). M.p. 90–91°. It was identical with **4b** by comparison (GC, 'H-NMR) and mixed m.p.

N- \int (2R,3S)-3-Ethyl-2-methylheptanoyl]bornane-10,2-sultam (9j). Using the general procedure, addition of EtMgCl to $8 (R¹ = Bu; 99 mg, 0.29 mmol)$ and subsequent protonation gave a mixture of stereoisomers. GC (B): 18.78 (l.4), 18.82 (96.5), 19.15 (2.1). FC (hexane/EtOAc 6.1) furnished 88 mg (82%; GC (B): 18.91 (99.79, 19.18 (0.25)) which where crystallized from hexane to give $9j(64 \text{ mg}, 60\%)$. M.p. 88–89°. IR (CCI_a): 2980, 2930, 2880, 1695, 1450, 1330. 'H-NMR: 0.73 *(t, ^J*= 7.5, **3** H); 0.77 *(t, J* = 7, **3** H); 0.86 (s, 3 H); 1.06 (s, 3 H); 1.07 *(d, J* = 7, **³ H);** 1.0-1.4 (9 H); 1.48 *(m,* 1 H); 1.68 *(m,* 1 H); 1.74-1.90 (3 H); 1.942.04 (2 H); 2.94 *(dy, J* = 9, 1 H); **3.39** *(d. J* = 14, 1 **H**); 3.44(d, J = 14, 1 **H**); 3.85(t, J = 6.5, 1 **H**). ¹³C-NMR: 176.40(s); 65.03(d); 53.15(t); 48.11(s); 47.64 **(s);** 44.51 *(d);* 43.13 *(d);* 39.58 *(d):* 38.41 *(t);* 32.73 *(I);* 30.60 *(t);* 29.30 *(1);* 26.39 (/); 22.84 *(t);* 20.98 *(I);* 20.76 *(4);* 19.82 *(q)*; 16.32 *(q)*; 14.06 *(q)*; 9.38 *(q)*. **MS**: 370 (2, $[C_{20}H_{35}NO_3S + 1]$ ⁺), 354 (4), 271 (70), 155 (70), 135 (98), 127 (75), 107 (55), 85 (100). HR-MS: 369.2371 (C₂₀H₃₅NO₃S⁺', calc. 369.2338).

X-Ray *Diffraction Analysis of* **9j**. The crystals (hexane) are orthorhombic, $a = 7.8740$ (8), $b = 12.3387$ (14), $c = 21.977$ (3) Å; space group $P2_12_12_1$, $z = 4$, $d_c = 1.150$ g \cdot cm⁻³. Data were collected at r.t. on a *Philips PW1100 diffractometer,* (MoKa). The structure was solved by a direct method (MULTAN 80) and refined by a full matrix least squares analysis. The absolute configuration was confirmed by a least-squares refinement of the enantiomorph-polarity parameter [16] $x = 0.18$ (25). The final R factor based on 1902 observed reflections ($|F_0| > 3\sigma(F_0)$) and $|F_0| > 8.0$) was 0.066.

N-((E,3 *R/-3-Ethyl-4-hexenoyl]hornane-I0,2-sultam* **(16).** Using the general procedure, addition of EtMgCl to **15** (646 mg, 2.09 mmol) and subsequent protonation gave an oil (GC (D): 17.80 (87.7), 17.93 (7.2), 18.08 (5.1)) which was crystallized from pentane at -20" to give pure **16** (488 mg, 69%). GC (C): 17.64 (100). M.p. 55-56". IR (CDCI,): 2990,2920,2890, 1690, 1340. 'H-NMR: 0.73 *(1, J* = 7, 3 H); 0.85 **(s,** 3 H); 1.05 **(s,** 3 H); 1.15-1.35 (4 H); 1.54(dd.J = 7, 1.5.3H); 1.7 1.9 (3H); 1.9-2.03(2H);2.40-2.56(2H); 2.74(m, 1 H); 3.36(d,J = 14, **1** H); 3.43(d, $J = 14, 1$ H); 3.80 (t, $J = 6.5$, 1 H); 5.20 (qdd, $J = 15, 8, 1.5, 1$ H); 5.41 (dq, $J = 15, 6.5, 1$ H). ¹³C-NMR: 171.02 (s); 133.39 *(d);* 125.72 *(d);* 65.14 *(d);* 52.96 *(t);* 48.19 *(s);* 47.64 (s); 44.59 *(d);* 41.29 *(t);* 40.70 *(d);* 38.48 *(1);* 32.76 *(1);* 27.71 *(t)*; 26.40 *(t)*; 20.74 *(q)*; 19.85 *(q)*; 17.85 *(q)*; 11.45 *(q)*. MS: 339 (17, C₁₈H₂₉NO₃S⁺⁺), 310 (10), 246 (20), 232 $(C_{18}H_{29}NO_3^+$, calc. 339.1916). (17), 206 (12), 152 (60), 135 (90). 125 (99), 124(97), 107 (65), 97 (loo), 83 (98), 67 (92), 55 (97). HR-MS: 339.1892

Preparations and GC Analyses of Mixtures of *N-[(2RS,3SR)-* **and (2RS,3RS)-2,3-Dialkylalkanoyllbornane-10,2-sultams.** *–* $N-(2,3-Dimethylpentanoyl/bornane-10,2-sultams. A 1:1 mixture of $(2RS,3SR)$ - and $(2RS,3RS)$ -$ 2,3-dimethylpentanal ('syn'and *'anti'.* resp.; *Aldrich)* was oxidized with *Jones'* Reagent. Treatment of the resulting carboxylic-acid mixture with oxalyl chloride and acylation of **I** with the thus obtained acyl chlorides (as described for the preparation of enoylsultams) gave a mixture of stereoisomeric **N-(2,3-dimethylpentanoyl)bornane-** 10,2-sultams (82%). GC (B): 14.73 (28.2), 15.04 (50.0), 15.13 (21.7).

N-(2,3-Dimethylhepptanoyl) hornane-10.2-suItams. A mixture of the minor (2RS,3SR)- and the major **(2RS,3RS)-2,3-dimethylheptanoic** acids *('syn'* and *'anti',* resp.) was prepared by addition of BuCu . BF3 to (E)-2-methyl-2-butenoic acid [13]. Conversion of this mixture to the acyl chlorides (oxalyl chloride) and acylation of **I** afforded a mixture of stereoisomeric **N-(2,3-dimethylheptanoyl)bornane-lO,2-sultams** (96%). GC (B): 17.73 (22.7), 17.91 (22.5). 18.02 (27.8), 18.28 (26.9).

N- $(3-Ethyl-2-methylheptanoyl/bornane-10,2-sultams. A 1:1 mixture of $(2RS,3SR)$ - and $(2RS,3RS)$ -3-ethyl-2$ methylheptanoic acids ('syn'and *'anti',* resp.) was prepared by addition of BuCu . **BF,** [I31 to (E)-2-methyl-2-pentenoic acid. Conversion of this mixture to the acyl chlorides (oxalyl chloride) and acylation of **I** gave a mixture of stereoisomeric *N*-(3-ethyl-2-methylheptanoyl)bornane-10,2-sultams (70%). GC (B): 18.53 (26.5), 18.60 (23.7), 18.67 (25.9), 18.96 (23.7).

Saponifications of N-Acylsultams IV $(\rightarrow V)$ **.** $(+)$ - (R) -3-Ethylheptanoic Acid. A 1.3 N aq. soln. of LiOH (11) ml, 14.3 mmol) was added to **2g** (d.e. 82%; 506 mg, 1.42 mmol) in THF (18 ml), and the mixture was vigorously stirred at 50° for 16 h. Evaporation, trituration of the residue with CH₂CI₂, and evaporation of the dried extracts gave I. Acidification of the CH₂Cl₂-insoluble residue with 2N aq. HCl, saturation with NaCl, extraction with CH,CI,, and evaporation of the dried **(MgSO,)** extracts gave the crude acid which was purified by FC (pentme/ Et₂O 7:3) to give an oil (126 mg, 56%). $[\alpha]_D = +2.4^\circ$; $[\alpha]_{S78} = +2.5^\circ$; $[\alpha]_{S46} = +2.8^\circ$; $[\alpha]_{436} = +4.8^\circ$ (neat, *T* = 20"; [12]: *[a],* = + 2.94" (neat)). **IR:** 3520, 3460-3000, 2960, 2860, 1710. 'H-NMR (CDCI,, D,O): 0.84 *(t, J* = 7.5,3 H); 0.85 *(t, J* = 7.5, 3 H); 1.15-1.45 (8 H); 1.78 *(m,* **1** H); 2.28 *(d, J* = 7,2 H). I3C-NMR: 180.55 (s); 38.58 *(t)*; 36.14 *(d)*; 32.89 *(t)*; 28.66 *(t)*; 26.14 *(t)*; 22.82 *(t)*; 13.95 *(q)*; 10.64 *(q)*. MS: 159 *(*0.7, $[C_9H_{18}O_7 + 1]^{+1}$), 141 (0.4), 129 (14), 98 (35), 69 (26), 57 (100).

 $(-)-$ (2R,3R)-2,3-Dimethylpentanoic Acid. A mixture of 9f (d.e. 99.4%; 150 mg, 0.459 mmol), LiOH \cdot H₂O (192 mg, 4.59 mmol) in THF/H₂O 5:3 (8 ml) was stirred vigorously at 60 $^{\circ}$ for 4 d. Following the above described extraction procedure, I was recovered and the crude acid chromatographed (pentane/Et₂O 3: $1 \rightarrow 1$:1) giving an oil $(28 \text{ mg}, 48\%)$. $[\alpha]_{\text{D}} = -20.2^{\circ}$; $[\alpha]_{578} = -21.0^{\circ}$; $[\alpha]_{546} = -24.2^{\circ}$; $[\alpha]_{436} = -43.1^{\circ}$; $[\alpha]_{365} = -72.1^{\circ}$ (c = 1.04, CH_2Cl_2 , $T = 20^\circ$; $[15]$: $[\alpha]_D = +32.9^\circ$ (neat, extrapolated value)). ¹H-NMR: 0.85 *(t, J* = 7.5, 3 H); 0.90 *(d, J* = 6.5, 3 **H);** 1.10 *(d, .I* = 7.5, 3 H); 1.16 *(m,* 1 H); 1.45 *(m.* **1** H); 1.68 *(m,* **1** H); 2.38 *(quint., J* = 7). I3C-NMR: 182.83 **(s);** 44.30 *(d);* 37.28 *(d);* 25.77 *(t);* 16.60 *(4);* 13.62 *(4);* 11.27 *(4).*

 $(-) (E, 3R)$ -3-Ethyl-4-hexenoic Acid. A mixture of **16** (862 mg, 2.5 mmol) and LiOH \cdot H₂O (1.06 g, 25 mmol) in THF/H20 2:1 (15 ml) was stirred at r.t. for 3 d. Following the above described extraction procedure furnished **I** (474 mg, 88%) and the crude acid which, on bulb-to-bulb distillation (bath 100"/3 Torr), gave an oil (274 mg, (4/4 mg, 88%) and the crude acid which, on bulb-to-bulb distillation (bath 100°/3 1 orr), gave an oil (2/4 mg,
77%). [α]_D = - 13.44°; [α]₅₇₈ = -15.0°; [α]₅₄₆ = -17.19°; [α]₄₃₆ = -30.55°; [α]₃₆₅ = *f* $[2]_{D} = -13.44$; $[2]_{578} = -13.6$; $[2]_{546} = -17.19$; $[2]_{436} = -30.55$; $[2]_{365} = -30.96$; (neat, $I = 20$).
 $[2]_{D} = -13.0^{\circ}$; $[2]_{578} = -13.63^{\circ}$; $[2]_{546} = -15.6^{\circ}$; $[2]_{436} = -28.21^{\circ}$; $[2]_{365} = -47.75^{\circ}$ *T* = 20°). IR (CCI₄): 3400–2700 (br.), 2980, 2940, 1710, 1450, 1420, 1290, 1030, 910. ¹H-NMR: 0.86 *(t, J* = 7.5, 3

H); 1.24-1.53 (2 H); 1.67 *(dd, J* = 6.5, 1.5, 3 H); 2.25-2.46 (3 H); 5.26 *(ddg, J* = 1.5, 15, 8, 1 H); 5.51 *(dq, J* = 6.5, **15, 1** H); 10.13 (br. **s,** 1 H). "C-NMR: 179.25 **(s);** 133.07 *(d);* 125.96 *(d);* 40.72 *(d);* 39.99 *(t);* 27.65 **(f);** 17.85 (4); 11.44(q). MS: 142 (24, C₈H₁₄O₇⁺), 113 (25), 97 (18), 84 (43), 71 (100), 67 (46), 55 (82). HR-MS: 142.0978 (C₈H₁₄O₂) calc. 142.0990).

 $(-)$ - $(3S)$ -3-Ethylhexanoic *Acid.* A mixture of $(-)$ - $(E,3S)$ -3-ethyl-4-hexenoic acid (137 mg, 0.96 mmol) in MeOH (10 ml) and Rh/Al_2O_3 (5%; 20 mg, 0.008 mmol) was stirred under H₂ (1 atm) at r.t. for 2.5 h. Filtration, evaporation of the filtrate, and distillation of the residue (bath 100"/3 Torr) gave an oil **(135** mg, 97%). $[\alpha]_{\text{D}} = -2.47^{\circ}; \quad [\alpha]_{578} = -2.57^{\circ}; \quad [\alpha]_{346} = -2.92^{\circ}; \quad [\alpha]_{436} = -4.98^{\circ}; \quad [\alpha]_{365} = -7.90^{\circ} \quad \text{(neat,} \quad T = 25^{\circ}).$ $[\alpha]_{D} = -1.86^{\circ}; [\alpha]_{578} = -1.95^{\circ}; [\alpha]_{546} = -2.27^{\circ}; [\alpha]_{436} = -3.94^{\circ}; [\alpha]_{365} = -6.21^{\circ}$ *(c = 2.45, CHCl₃, T = 25[°])*; $[23]$: $[\alpha]_D = -2.50^\circ$ (neat)). IR (CCI₄): 2970, 2920, 2880, 1710, 1470, 1410, 1290, 940. ¹H-NMR: 0.87 *(t, J = 7, 3)* H);0.89(df,J=2,7,3H);1.23~ **1.47(6H);1.84(m,IH);2.29(d,.I=6.5,2H);11.7(br.s,** 1H).'3C-NMR:180.55 (18), 85 (40), 84 (45), 69 (28), 61 (29), 60 (100), 55 (48). HR-MS: 115.0748 (C₁₆H₁₁O₂, calc. 115.0758). *(s); 38.56(1);* 35.96 *(d);* 35.55 *(t);* 26.17 *(t);* 19.63 *(1);* 14.17 (4); 10.63 (y). MS: 115 (12, [C,Hl,O, - C,Hs]+.), ¹⁰¹

REFERENCES

- [l) K. Tomioka, **K.** Koga, in 'Asymmetric Synthesis', Ed. J. D. Morrison, Academic Press, **19x3,** Vol.2, **pp.** 201- 224.
- [2] B. A. Barner, A. I. Meyers, *J. Am. Chem.* Soc. 1984, 106, 1865; G. **H.** Posner, M. Hulce, *Tetrahedron Lett.* 1984,25, 379; G. H. Posner, T.P. Kogan, M. Hulce, *ibid.* 1984,25, 383.
- [3] W. Oppolzer, H. Loher, *Helu. Chim. Acfa* 1981,64,2808; W. Oppolzer, R. Moretti, T. Godel, A. Meunier, H. Loher, *Tetrahedron Lett.* 1983,24,4971; W. Oppolzer, P. Dudfield, T. Stevenson, T. Godel, *Heh.* Chim. *Aciu* 1985, 68, 212; W. Oppolzer, T. Stevenson, *Tetrahedron Lett.* **1986,** 27, 1139; W. Oppolzer, R.J. Mills, W. Pachinger, T. Stevenson, *Helu. Chim. Acta* 1986, *69,* 1542; W. Oppolzer, R. Moretti, **G.** Bernardinelli, *Telruhedrnn Lett.* 1986,27,4713.
- [4] W. Oppolzer, *Tetrahedron* 1987, *43,* 1969.
- [5] W. Oppolzer, P. Dudfield, *Helv. Chim. Actu* 1985,68,216; W. Oppolzer, R. Petirosa, R. Moretti, *Tetrahedron Lett.* 1986, 27. 831.
- (6) **S.G.** Davies, J. C. Walker, *J. Chem. Sue., Chem. Commun.* 1985, 209; L.S. Liebeskind, M. E. Welker, *Tetrahedron Lett.* 1985,26. 3079; **S.** G. Davies, R. J. C. Easton, J.C. Walker, P. Warner, *Tetrahedron* 1986,42, 175.
- [7] W. Oppolzer, G. Poli, *Tetrahedron Lett.* 1986,27, 4717.
- [8] W. Oppolzer, P. Schneider, *Helu. Chim. Acta* 1986,6Y, 1817.
- [9] W. Oppolzer, *Pure Appl. Chem.,* in press.
- [lo] W. Oppolzer, J.-P. Barras, *Helv. Chim. Acta* 1987, 70, 1666.
- ¹¹I] W. Oppoker, R. J. Mills, **M.** Rkglier, *Terruhedron Lett.* 1986,27, 183; full paper in preparation.
- [I21 A. **I.** Meyers, R.K. Smith, C. E. Whitten, *J. Org. Chem.* 1979,44, 2250.
- [I31 Y. Yamamoto, K. Maruyama, *J. Chem. Soc., Chem. Commun.* 1984, 904.
- [I41 W. Oppolzer, G. Poli, A. **J.** Kingma, in preparation.
- [IS] R. Rossi, P. Pino, *Gazz. Chim. Ral.* 1968,98, 398; R. Rossi, *ibid.* 1968,98, 1239.
- [I61 G. Bernardinelli, H.D. **Flack,** *Acta Crys/ullogr., Sect. A* 1985,41, 500.
- [I71 W. Oppolzer, C. Chapuis, G. Bernardinelli, *Helv. Chim. Acta* 1984,67, 1397.
- [I81 L.G. Damm, Thesis, ETH No.6390, 1979; A. Kumin, Thesis, ETH No. 6509, 1979; A. Kumin, E. Maverick, **P.** Seiler, N. Vanier, **L.** Damm, R. Hobi, **J.** D. Dunitz, **A.** Eschenmoser, *Helu. ('him. Actu* 1980,63, 1158.
- [19] A.I. Meyers, B.A. Lefker, K.Th. Wanner, R.A. Aitken, *J. Org. Chem.* 1986, *51,* 1936; P. Magnus, T. Gallagher, P. Brown, **J.C.** Huffman, *J. Am. Chem.* Soc. 1984,106, 2105.
- [20] J. Munch-Petersen, *C.* Bretting, P. Moller Jergensen. **S.** Refn, V.K. Andersen, A. Jart, *Acfa Chem. Scnnd.* 1961,15, 277; T. Kindt-Larsen, V. Bitsch, I. G. K. Andersen, A. Jart, J. Munch-Pctersen, *ibid.* 1963, *17,* 1426.
- [21] A. R. Chamhcrlin, S. H. Reich, *J. Am. Chem. Sue.* 1985,107, 1440.
- [22] W. Oppolzer, G. Poli, A. J. Kingma, C. Starkemann, G. Bernardinelli, **full** paper in preparation.
- [23] F. Piacenti, **S.** Pucci, M. Bianchi, R. Lazzaroni, P. Pino, *J. Am. Chem.* Soc. 1968, **YO,** 6847.
- [24] M. Vandewalle, J. Van der Eycken, W. Oppolzer, C. Vullioud, *Tetrahedron* 1986,42,4035.